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An electrically conducting fluid is contained above a horizontal plane. A uniform 
vertical magnetic field is applied externally and the plane is maintained at  a 
uniform temperature except for a point or a line heat source. Density variations 
are ignored except where they give rise to buoyancy forces. 

(i) The point heat source. Non-linear effects are small sufficiently far from the 
source. The resulting buoyancy forces interact with the magnetic forces to 
maintain a radial inflow towards the heat source. This fluid then escapes vertically 
as a jet, its structure now depending on the additional influence of viscosity. 
The perturbations of the temperature distribution and the magnetic field due 
to the motion are obtained. Finally, the effects of these perturbations back on to 
the fluid velocity are considered. The most striking features of the perturbations 
are (a)  the action of the jet as a line source of heat for the fluid in the outer regions, 
( b )  the large (compared to other perturbations) eddy in the jet. 

(ii) The line heat source. The temperature distribution and magnetic field are 
weakly perturbed only if the thermal and electrical conductivities are sufficiently 
small. Similar results are obtained, as in (i) above, provided E (a dimensionless 
number characterising the strength of thermal convection: see (1.32), (3.24)) is 
less than $. However, even for small e, the effects of thermal convection cannot 
be ignored. Hence, superimposed on the jet is an eddy (driven by buoyancy 
forces) whose flux of fluid increases indefinitely with its height above the plane. 
When e > t ,  the results suggest that numerous eddies will be formed. 

1. Introduction 
Thermal convection in a strong magnetic field has much astrophysical interest, 

since in a star thermal convection may be considerably influenced by the action 
of magnetic forces. Although stability problems of the type considered by 
Chandrasekhar (1961) have been studied extensively, the problem of steady 
convection in a uniform vertical magnetic field does not appear to have been 
investigated. In this paper attention is restricted to the following two problems: 
An electrically conducting fluid is contained above an infinite horizontal plane. 
A uniform vertical magnetic field is applied externally, and the plane is main- 
tained at  a uniform temperature except for a point or line heat source. The density 
of the fluid is assumed constant except where slight density variations caused 
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by the heating give rise to  buoyancy forces (the Boussinesq approximation). 
The steady motion resulting from the differential heating is examined. 

Free convection in the absence of magnetic forces has been studied by many 
authors, but of particular interest here is the work of Fujii (1963). He considered 
free convection above both a line and a point source of heat, and showed that 
the motion consists of a buoyant plume which entrains fluid horizontally from 
infinity. The thermal boundary-layer approximations were made in the equations 
governing the motion of the plume, and hence similarity solutions were obtained. 
Since motion across the magnetic field lines is inhibited, this model must be 
modified considerably in the presence of a vertical magnetic field. 

The problem of a jet in an aligned magnetic field has certain similarities with 
thermal convection above a heat source. Toomre (1967) considered a two- 
dimensional jet, and showed that far downstream inertia is negligible. In this 
region a similarity solution (also proposed independently by Jungclaus 1965) 
was obtained, in which a balance of magnetic and viscous forces was maintained. 
Hoult (1965) had attempted to describe the motion of a round jet (for the 
particular case of large Reynolds number and small magnetic Reynolds number) 
near the axis of symmetry by Schlichting’s (1955) classical non-magnetic solu- 
tion. Since this demands the entrainment of fluid, a solution was sought outside 
the jet that corresponded to a uniform line sink along the axis. Unfortunately, 
the non-linear ordinary differential equation, which he solved numerically to 
determine the motion, has no solution satisfying the required boundary con- 
ditions. The approach adopted by Hoult, though attractive, is certain to 
encounter the same difficulties in the case of the buoyant plume. Essentially, 
entrainment of such a large quantity of fluid cannot be maintained without 
convecting the magnetic field lines. 

(i) The case of the point heat source. Cylindrical polar co-ordinates ( r ,  $J, x )  are 
taken with 2 (the unit vector in the z direction) vertical and with the source of 
heat a t  the origin (0, 0 , O ) .  It is supposed that the space z < 0 is occupied by a 
solid and that a uniform magnetic field B$ is maintained as z + k co. For steady 
flow, Maxwell’s equations reduce to 

V.B=O,  j=p-lVAB, E=-VO,  (1 .1 )  

while Ohm’s law states that 
j = a(E+u A B), 

where p is the magnetic permeability, cr is the electrical conductivity, E is the 
electric field, is the electric potential, j is the electric current, u = (uT, 0, u,) is 
the fluid velocity and B = (Br, 0, B,) is the magnetic field. Since ( l . l ) ,  (1.2) and 
the axisymmetry lead to 

(1 .3)  V2@ = V . ( U A B ) ,  

= 0,  

it follows that the electric field is uneffected by the fluid velocity. Hence provided 
no external electric field is applied 

Further, since u = 0 for z < 0, (1.2) shows that 

(1.4) 

j = 0 ( x  < 0) .  (1.5) 

E = 0. 
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p(u. V) u = - V p  +pgaTk + j A B +pvV2u, (1.6) 

where p is the density, v is the kinematic viscosity, a is the coefficient of expan- 
sion, g is the acceleration due to gravity, T is the excess temperature and 

Making the Boussinesq approximation we have the equation of motion, 

( p  - p g x )  is the pressure. The remaining equations governing the motion are the 
continuity equation, v.u = 0, (1.7) 
and the heat conduction equation, 

(u. V) T = KV2T, 

where K is the thermal conductivity. 
The boundary conditions on z = 0 are 

where 2nQ is a measure of the total input of heat, 

u, = u, = 0, 

and the continuity of both B, and B, across x = 0 

(1.10) 

(1.11) 

(see (1.27) together with the footnote), while the boundary conditions as 
1.1 -+ 00 are u+O, B+B,& T+O. (1.12) 

From (1 .  l), (1.2) and (1.6) it  is evident that the magnetic and viscous forces 

(1.13) 
determine a length scale, 

This is the familiar Hartmann length scale, over which these forces can be in 
equilibrium. Since we are primarily concerned with the interaction of buoyancy 
and magnetic forces, the following dimensionless variables are introduced: 

r’ = r/Z, u‘ = (v/gaQ)u, b = B/B,, 

1 = (p~/c~Bf)*.  

1. (1.14) 
j’ = (v/gaQ) (gB0)-lj, 6 = WQ) T ,  P I  = (l/pgaQ)p, J 

together with the only three independent dimensionless numbers, 

P = v/K, p = lg~Q/vK, y = ZgaQ/v(~,u-l, (1.15) 

where P is the Prandtl number and p is the Rayleigh number based on the 
Hartmann length scale. The governing equations now become (after dropping 

(1.16) the primes) 

/~P-’(u.V)U = -Vp+&+(UAb)Ab+V2U, (1.17) 

V.U = 0, V.b = 0, 

YU A b = V r \  b, 

p(u. V) e = v2e. 

(1.18) 

(1.19) 

The stream function $ and the magnetic vector potential (0, x/r ,  0) are introduced 
so that the velocity and magnetic field are given by 

(1.20) 

48-2 
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The curl of (1 .17 )  is taken, and after some manipulation ( 1.17)-( 1.19) become 

(1.22) 

where 

and 

In  terms of the new variables the boundary conditions become 

(1.23) 

(1.24) 

(1.25) 

(1.26) 

(1.27) 

u, = us = 0, J 
(1.28) u+O, b + & ,  8+0 as Irl-fco. 

(ii) The case of the line heat source. The two-dimensional problem is very 
similar. Co-ordinates (x ,  y, z )  are taken with 9 (the unit vector in the y direction) 
vertical and with the line source of heat at  ( O , O , z ) .  Attention is restricted 
to the case where the solid is a perfect conductor (see 5 3.3). Thus the only 
boundary condition that is applied on the magnetic field at x = 0 is b, = constant 
( =  strength of the uniform vertical magnetic field in the solid). 

Most of the equations in the cylindrical geometry carry over to the two- 
dimensional case with certain slight alterations. I n  particular, the boundary 
conditions (1.9) and (1 .11)  are replaced by 

continuity of b$ 

T ( x ,  0) = &W, (1.29) 

and B J x ,  0) = constant. (1.30) 

substitutions (the dimensions of Q are different) 
The equations governing the motion are made dimensionless by the 

XI = x/Z, U' = Z-l(v/p&)u, b = B/B,, 1 (1.31) 
j r  = (aB,z)-l(v/sa&)j, 6 = U/Q)T, pr = ( p s a ~ ) - ~ p , J  

t These are just symmetry conditions. 
$ If the solid is a perfect conductor, the magnetic field in thc solid is b = 2 and this 

boundary condition is replaced by b, = 1 on z = 0. The tangential component of the 
magnetic field may bo discontinuous, resulting in a surface current sheet on the conductor. 
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and hence the dimensionless numbers (1.15) are replaced by 
eo = 12g&/vK, a. = ZZgaQ/v(~p)-l. 

Defining the velocity and magnetic field as 

757 

(1.32) 

(1.33) 

the governing equations (after some manipulation) reduce to 

(1.34) 
ae 

- eoP-l(u. V )  V2$ = + (b . V )  {(b . V )  $} - V'(V'@), 

where 

a 0 ( u . V ) x  = VZX, 

€&U. V) 8 = vze, 
a$ a ag a (U.V) = - --- - 
ay ax ax ay' 

ax a ax a 
ay ax ax ay' 

(b.V)=----- 

together with the boundary conditions 

and 

(1.35) 

(1.36) 

(1.37) 

(1.38) 

(1.39) 

(1.40) I e = qx), 
u, = uI/ = 0, on y = 0, 

b, = constant 

(1.41) 

In the following sections solutions of the problems posed by (1.20)-( 1.28) and 
(1.33)-( 1.41) are presented, which are valid well clear of the Hartmann layer, 
i.e. 121 3 1 (or y $ 1) .  

2. The point source of heat 
2.1. The jirst approximation 

If a plume of the type described by Fujii (1963) exists, outward diffusion of heat 
from the plume must be overcome by the inflow of heat by convection. Moreover, 
since the temperature is uniform outside the plume, there can be no buoyancy 
forces acting in this region. Hence, entrainment of fluid into the plume must be 
maintained by considerable pressure forces in order to overcome the action of 
the magnetic field. It would seem unlikely, therefore, that this model could 
represent the resulting flow, and we should expect that thermal diffusion is at 
least comparable to convection in the main body of the fluid. 

Assume, for the moment, that the magnetic field is unperturbed. Then, 
assuming that the dimensionless numbers P, /3, y are of order 1, the nature of 
the boundary conditions suggests that the motion may be described by similarity 
solutions of the form, 

(2.1) g = Z S Y O ( T ) ,  0 = Zt@, (V) ,  
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for R > 1, where 7 = r / z  and R = (r2+z2)4.  (2.2) 

Further, considering the inhibiting effect of the magnetic field on the flow, there 
appears a strong possibility that the effects of thermal convection will be 
negligible. Thus, since the boundary condition (1.27) implies 

it follows that I9 = 2-20,(7). (2.4) 

Now with this value of 0 it is clear that the magnetic and buoyancy forces are 
comparable in the equation of motion, provided 

$ = Yo(??). (2.5) 

Substituting the above values of 1c. and 8 into the governing equations (1.21) 
and (1.23), and retaining only the highest powers of z ,  we have 

(7Y0)” - 0; = 0, (2.6) 

(2.7) 

0, = (1 +72)-8. (2.8) 

(1 + v 2 )  0:+ (q-l+ 67) @;+ 60,  = 0. 

The solution of (2.7), satisfying the boundary condition (2.3), is 

Neglecting the no-slip condition on z = 0, but retaining the condition @ = 0, 

(2.9) 
(2.6) integrates to give Yo = ( 1  +772)-3. 

It is evident that the boundary conditions on @ at r = 0 are not satisfied, so 
that a boundary-layer solution must describe the motion near r = 0. Suppose 
that the horizontal length scale is H ,  and that the vertical length scale is 
L ( H ) .  Then the ratio of viscous to inertia forces in (1.21) is of order (LP/P) 
(since Yo(0) = 1).  Thus, inertia forces will be negligible, and a balance of viscous, 
magnetic and buoyancy forces will be maintained. Since the ratio of magnetic 
to viscous forces is of order (H4/L2),  it seems reasonable to look for similarity 

(2.10) 
solutions of the form, 

where 6 = r/2z*. Substituting into (1.21), (1.23), and as before retaining only the 
highest powers of z ,  we are left with 

$ = $ o ( t ) ,  0 = z-200(t), 

(2.12) 

Applying the boundary conditions (1.26) and @o(co) = 1, these have the solutions, 

k,, = 1 - e d 2 ,  8, = 1 ,  (2.13) 

where dr0 is axisymmetric analogue of the solution proposed by Jungclaus (1965) 
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for the two-dimensional jet. Moreover, defining 

'I [ zz  @,(r) outside the jet, 

\z$,,([) inside the jet, J X =  

i t  is apparent that, to a first approximation, 

(2.14) 

D2x = 0. (2.15) 

Hence the values of 8 and @ given by (2.8), (2.9) and (2.13) provide a self- 
consistent description of the motion outside the Hartmann layer ( z  & 1). In 

z 

FIGURE 1. The streamlines and isotherms above the point heat source 
obtained from the f i s t  approximation. 

particular, the non-linear effects are negligible, so that the temperature distribu- 
tion (6 = z /R3) ,  and the magnetic field (x = *r2), are independent of the fluid 
velocity. Outside the jet, the vertical component of the momentum equation (1.6), 

8P 0 = ---8, az 
determines the pressure distribution, 

p = - IjR. 

Hence, the radial balance of magnetic and prcssurc forces 

(2.16) 

(2.17) 

(2.18) 

together with continuity, determines a radial inflow of fluid with velocity 

UR = - 1/R2. (2.19) 
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The fluid is then ejected along the axis r = 0, by the action of the pressure force, 

(2.20) 
1 1  
2 22 

p = --+-ee-P. 

The first term produces a force which exactly balances the buoyancy force, while 
the second term balances viscous forces and magnetic forces in the vertical and 
radial directions respectively. 

Finally, the total vertical flux of heat, 

is to lowest order in z given by 
F = - j m - ( - ) r d r = O ,  a z  

a2 ~3 

(2.21) 

( 2 . 2 2 )  

i.e. all the heat that is put in at  the source is extracted throughout the remainder 
of the plane z = 0. 

2.2 .  The second approximation 

The analysis of the previous section suggests that a systematic approach may be 
adopted to obtain a higher order approximation. We divide the space z > 0 into 
the following regions (see figure 2) 

I ~ $ 1 ,  r + z + ,  ) 
I1 z $ 1, r < z ,  

I11 r + 1, z = O ( l ) ,  

IV r = O(l),  z = O(l),  

(2.23) 

and define the overlap of regions I and I1 as region V. Provided we neglect the 
no-slip condition on z = 0, we may ignore the Hartmann layer in region 111. 
Moreover, it  is reasonable to assume that the flow for sufficiently large R does 
not depend on the detailed nature of the flow in region IV. Hence, boundary 
conditions to the flow in regions I and I1 are prescribed only on z = 0 and r = 0. 
We now assume that the solutions may be written in the form 

$ = Yo(7) + C01(z-l) Yl(7) + go&+) Y2(7) + . . .) (2.24) 

(2.25) 

in region 11, where Con 9 etc. Since both these equations must be a valid 
description of the flow in region V, they must be approximately equivalent when 
6 & 1 , ~  < 1. The method of matching adopted is that of Van Dyke (1964), where 
5 , ~  are regarded as inner and outer variables respectively, and 2-l is regarded as 
a small parameter. 

Making the above assumptions, we proceed to obtain first corrections to the 
temperature distribution, the magnetic field and the velocity profile. Since the 
corrections are found to be uniformly small for 1x1 1, these results give weight 
to the lowest order solutions. Further, since this method (used implicitly in 
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$2.1) is not well established, confidence is gained by forming a consistent second 
approximation. 

(i) The temperature distribution. We suppose that 

0 = z - ~  O,@) + P z - ~  Ol(r) + . . . , 
B = ~ - ~ - t - ~ A ~ - ~ l n z + p ~ - ~ 8 , ( ~ )  + ~ - ~ g ( [ ) +  ..., 

(2.26) 

(2.27) 
in region I, and 

FIGURE 2. The various regions above the point heat source. 

in region 11. The necessity for the term P A z - ~ I ~ z  ( A  being a constant) becomes 
apparent later, while the term ~ - ~ g ( g )  is determined by the vertical diffusion of 
the lowest order temperature. Now direct substitution into (1.23) leads to 

(1  + r2) Ol; + (7-’ + 87) 0; + 120, = - 27-V; O,, (2.28) 

(to;)’ = -v;, 
together with the boundary conditions 

8; = g‘ = 0 at  6 = 0, 

g - t  -(it2 as t-+oo,t 

O1 = O ( Y - ~ )  as T,J+CO. 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

Integration of (2.28) is made easier by the substitution, 

u2 = 1 + 7 2 ,  (2.34) 

By matching with outer lowest order temperature. 
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and leads to the differential equation, 

with the general solution: 

The boundary condition (2.33) implies that 

B = 0, 

(2.35) 

(2.36) 

(2.37) 

while, as 7 -+ 0, O1+4Clnfrr+(6C+&). (2.38) 

Integrating (2.29) and (2.30) subject to the boundary conditions (2.31), (2.32) 

(2.39) 
leads to e-t 

0, = D-ln62-j; 

9 = - 6t2, 

and so, as 6 -+ co, 8,+D-lnt2.  

(2.40) 

(2.41) 

The three remaining arbitrary constants A ,  C and D are now determined by the 
matching, and found to be 

C = - '  2 ,  A = I  D=-_5-.  2 (2.42) 

Hence O,(r) and 8,(t) are given by 

@ 5 2  1 1  --- 1 u- 1 
l -  2u4 2(u3 i5) ns' 

d, = 1; --ddt. e; 

(2.43) 

(2.44) 

The perturbation temperature distribution in region I corresponds to a line 
heat source of strength 

= 2p~-3,  (2.45) 

on r = 0, together with a continuous distribution of sinks throughout the fluid. 
The former results from outflow of heat from the jet by diffusion, and is related 
to the vertical transport of heat by convection in region I1 by 

The heat sinks are provided by the inward convection of colder fluid from infinity, 
whilc the associated total vertical heat transport is 

(2.47) 
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Finally, the vertical heat flux by diffusion, 

(2.48) 

combines with the convective transport to give no total vertical heat flux (F  = 0). 

x = 22(*72) + y q ( T )  + . . ., 
x = z(2E2) + rd1(0 + * * * > 

(ii) The magnetic field. As before it is supposed that 

(2.49) 

(2.50) 

On substituting (2.49) and (2.50) into (1.22), and retaining only the highest 

in region I, and 
in region 11. 

powers of z, we have 

(2.51) 
p% (2 ’ 0),‘1 

- 0 (2 < O ) , j  
(1  + 72) w; - T-W’  - 

t(E-ldi)’ = 2E$& 

together with the boundary conditions 

= (E-ldi)’ = 0 at E = 0, 

continuity of b on z = 0, 

(2.52) 

(2.53) 

(2.54) 

a)l= 0 at q = - 0 .  (2.55) 

Integration of (2.51) is again facilitated by the substitution (2.34), which leads to 

d20, p3 (2 > 01, 

du2 - ‘I 0 (2 < 0). 

[ - iu- l+A +Bu (2 > O),\ 

-- 

Thus (2.52) and (2.56) have the general solutions 

“=I C+Du ( z  < O b J  

(2.56) 

(2.57) 

= c2 + e-t2 + Et2.  (2.58) 

The matching conditions and boundary conditions then lead to 

‘1 (2.59) 
A+B-3,  = 0, &+B = 1 + E ,  A = c, 

B = D, C = D (noting u < 0,  when x < O).J 

(2.60) 

$1 = $(362+4e-ca).t (2.61) 

The resulting magnetic field lines in region I, are illustrated in figure 3. 

t The solutions corresponding to (2.60) and (2.6 1) when the solid is a perfect conductor are 

= /=I 2u (2 > O ) ,  
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(iii) The velocity distribution. Since the perturbation temperature distribution 
and magnetic field are now known, the corresponding correction to the fluid 
velocity can be found. In  region I, we suppose that 

@ = Yo(r) + 2 - 1 Y 1 ( q )  + . . . . (2.62) 

Z 

FIGURE 3. The perturbed magnetic field lines and isotherms. 

After substituting into (1.21)) and making the usual approximations, we find 
that Yl satisfies the equation 

(T]2Yl)” = pq0;- y(20,Y,”+ 40;Y;)) (2.63) 

together with the boundary conditions 

Yl = O(7-l) as 7 + 0, (2.64) 

= 0(qs)  as q+co. (2.66) 

Integrating (2.63) subject to these boundary conditions leads to 

where I 
(2.67) 

A(P, 7) = &@p- 3y) . t  

t The value of A(P, y )  is evaluated by direct integration of 

Iom $3;dr and (2Q1Yg+4@1Y”;) d7. 
/OW 

When the solid is a perfect conductor, A(P, y )  = -&7r(2P-r). 
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Moreover, as 7 -+ 0, we have 

(2 .68)  

Thus a matching can be made in region V with a solution in region I1 of the 
form, 

1 
provided that, as [ --f 00, 11.1 = + o(e-2), 

(2 .69)  

(2.70) 

32 -P, (2 .71)  

while the boundary conditions, on r = 0, imply that 

Substituting into (1 .21)  we find that (for $1) a balance of viscous and magnetic 
forces is maintained. Hence $l satisfies 

which has the solution 

satisfying the boundary conditions (2 .70) )  (2 .72 ) )  where In is the Bessel function 
of imaginary argument. 

The problem for $2 is very lengthy but straightforward. Forcing terms are 
produced by the convection and vertical diffusion of the lowest order 6 ,  x and $. 
Further, the solution is non-unique, because there is a non-zero complementary 
function of the equation which satisfies the condition O(c2) ,  as c -+ 0, and decays 
exponentially, as [ --f co. 

Consider the perturbation velocity distribution (see figure 4). In region I, 
the forcing terms resulting from the magnetic field and temperature distributions 
tend to make the fluid rise and fall, respectively. The perturbation velocity 
increases, as 7 --f 0, and in region V the motion is vertical, 9 N 2Alr (the direction 
of flow depending on the sign of A ) .  This ever increasing velocity is finally termi- 
nated by viscous action in a region 11, where a large (compared to other perturba- 
tions) viscous eddy, Z-~A@~(<) ,  is formed. Moreover, there is a critical value of 
the ratio y ip for which there is no eddy, namely, 

2 
( =  2 when the solid is a perfect conductor). (2.75) 

It must be emphasized that the eddy is not a feature of the flow. The velocity 
corresponding to z-*A@.,([) represents only a small correction to the basic flow. 
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To summarize, a self-consistent second approximation has now been obtained, 

2 5 z r 2 - 2 z 2  o = - + p  ---+- l n z ) ,  R3 [ 2R4 2R5 

(gr2+$y(R+22)(R-z) /R ( z  > O ) ,  1 
= \&-2++fy(R+z) ( z  < O),t  i 

( 2 . 7 6 )  

(2.77) 

( 2 . 7 8 )  

in region I, and $ = 1 - e-ta + z-*A@,(E) + Z - ~ @ ~ ( P ,  P, y ,  51, (2.79) 

(2.80) 

(2.81) 

FIGURE 4. The perturbation streamlines for the stream function z-k4?/rl(& when y/P < g. 
(Note that (i) the vertical streamlines in region V ultimately descend into region I, (ii) the 
eddy is not a feature of the full flow pattern.) 

The above results show fairly conclusively that the model presented in 9 2.1 
is correct for R % 1, provided P, p, y are of order 1. Moreover, as R -+ co, the 
solutions will be valid whatever these values are. Finally, the strength of the 
lowest order corrections to $, 6' and x depend linearly on p and y ,  while the in- 
fluence of the Prandtl number first becomes apparent in the term X-~$~(P, p, y,  t).  

t When the solid is a perfect conductor (2.78) and (2.81) are replaced by 

+r2+&y(z-z2/R) ( z  > O ) ,  

&rZ (2 < O ) ,  
x = {  
x = + r 2 + y ( + t 2 + e - ~ s ) .  
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3. The line source of heat 
3.1. The solution for eo = a. = 0, e0P-l Jinite 

For the general case eo + 0, a0 =k 0, the resulting flow is very different from the 
motion caused by a point heat source. In  particular thermal convection cannot 
be ignored even €or eo < 1. However, throughout $3,  the systematic approach 
of the previous section is adopted. The spacey > 0 is divided into the four regions 
described by (2.23), where r ,  x are replaced by x, y respectively. Then arguments, 
similar to those of 3 2, lead to the corresponding similarity variables, 

and 
‘I 7 = x / y  in region I, 

6 = x/2yi in region 11. J 
Before becoming involved in the general case, it is useful to know the solution 

to the simplified problem eo = do = 0, e0P-l finite. For this particular case, 
corresponding to an infinite thermal and magnetic diffusivity, there can be no 
convection of heat or of the magnetic field lines. Hence, (1.35) and (1.36) become 

V28 = v2x = 0. (3.2) 

The solutions of these equations satisfying the boundary conditions (1.39)-( 1.41) 
are : 

X = --x. 
Hence in region I, 8 is given by 

I9 = y-1O0(7) = y-I( 1/77) (1 + 72)-1, 

while in region I1 

Consideration of (1.34) indicates that the required form for $ is 

and 
‘I q+ = Yo(7) 

$ = $o(6) 

in region I, 

in region 11. J (3.7) 

Substituting into (1.34), and retaining only the highest powers of y ,  leads to 

(3; + (7pYA)’ = 0, 

4ll.t;. - (&I+; + 3&4) = 0. 

(3.8) 

(3.9) 

These equations itre solved subject to the boundary conditions, 

$o=q+I.;I = 0 on c =  0, (3.10) 

Yo = O(7-l) as ~ - + q  (3.11) 

and the matching conditions in region V. Hence we have 

(3.12) 

(3.13) 
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where $, is the solution proposed by Jungclaus (1965) for the two-dimensional 
jet. The pressure distribution 

(3.14) p(x ,  y) = - In (x2 + y2)* + y-4- e-ca, 
1 1 

n. 2 4 n  

for y % 1, is now determined by integrating the equation of motion. 
The solution shows similar features to the flow above the point source of heat 

in $2.1.  Fluid is forced radially inwards from the outer regions and is ejected along 
the axis x = 0. Moreover, as both problems are linear, the solution in this section 
may be regarded as the superposition of flows, resulting from point sources of 
heat distributed along the line (0,O). 

3.2. T h e  general problem 

The analysis in the previous section suggests that a solution may exist in region I 

(3.15) of the form, 

Substituting these values into (1.34)-( 1.36)) and retaining only the terms con- 
taining the highest powers of y, leads to 

$ = YO(T)> 6 = Y-l@o(Y), x = y@(r ) .  

(3; + (WY;)’ = 0, (3.16) 

(1 + 72) @” = - CLOY; @, (3.17) 

[(l +y2) 0,]” = €,Y;O,. (3.18) 

Moreover, the last two equations are exact as no terms have been neglected. 
In terms of the similarity variables, the conditions (1.39)-( 1.41) become 

Yo = O(y-I), 0, = O(y-2), @ = O(y) as y + a,? (3.19) 

Yo = o(y-l), @ N -7 as y + O ,  (3.20) 

and 
Pm 

J O , ~ T  = 8. 
0 

(3.21) 

The condition Yo = o(7-l) as 7 + 0 is equivalent to demanding that the horizontal 
velocity should vanish as y + 00, for fixed x. Integrating (3.16) subject to the 
boundary condition (3.20) leads to 

WY; = O,(O) - Oo(y). (3.22) 

Moreover, integration of the governing equations gives the pressure distribution, 

(3.23) 

At this stage, it is convenient to renormalize the problem by the change of 
variables, 

p ( x ,  y) = O,(O) In y + Yh @@’ dy. s” 

(3.24) 

t These three boundary conditions are not independent. The conditions on Yo and Q, 

Wr) = yo(r)/@o(o)7 @(r)  = @o(y)/@o(O),) 

E = Oo(0)€O,  = o , ( ~ ) ~ , ,  j 

are determined by (3.17), (3.18), (3.22) and the boundary condition on 0,. 
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where O,(O) is determined subsequently from (3.21) as 

Hence (3.22), (3.17) and (3.18) become 

( D 2 y  = 1 - 0, 

(1 + 72) CD” = - aY’CD, 

[( 1 + 72) 01” = € Y O .  

(3.26) 

(3.27) 

(3.28) 

Consider the solutions of these equations as 7 -+ 0. From the boundary con- 
dition (3.20) we have CD N -7, so that (3.26) and (3.28) lead to 

q2f”+sf=O as 7 + 0 ,  

where the function f is defined by 

(3.29) 

(3.30) 

Hence, f is given by (3.31) 

where n, and n2 are roots of the equation, 

n(n- l )+s  = 0. 

Moreover, n1 and n2 are real only if s < 4 and so, if s > 4, 
(3.32) 

f N +(AT” +&-”), (3.33) 

where A is a complex constant and Y = n, - 4 (pure imaginary). 

know if either A,  or A,  is to be zero, we put 
For the present, attention is restricted to  the case e < 4. Now since we do not 

f N A y n  as 7 + 0 .  (3.34) 

yn-’, 0 I-A’?,”, @ N -7. (3.35) 
A 

Y N - 
n-1 

Hence we have 

It follows that the conditions on the inner problem, as 6 -+ co, are: 

(3.36) 

8 - p - y - 1 - t y ~ 2 q 3 ,  (3.37) 

$ -9Wt). (3.38) 

(i) The inner problem. Restricting attention to the case e < 4, the asymptotic 
forms (3.36)-(3.38) require that the solution in region I1 should be of the form, 

(3.39) 

(3.40) 

(3.41) 
Fluid Meoh. 39 49 
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where the change of variables, 

II. = o,(o)@*, e = o,(o)e*, (3.42) 

has been made. Substituting into (1.35), and retaining only the highest power 
of y, we obtain 

so that the uniform magnetic field given by 

q5; = 0, (3.43) 

x = - Y W t - ) ,  (3.44) 

0 = 28;+((n2-1)Ilr0+(2n+1)t-$;+t-21Cr;;}--~~, (3.45) 

is maintained. Thus, repeating the procedure in (1.34) and (1.36) leads to 

0; = 2 4 ; ,  (3.46) 

together with the boundary conditions 

0; = 0, $o = $: = 0 at 8 = 0, (3.47) 

2n-1 
$0 - A n--l tn-1 as ~ + m ,  (3.48) 

where the condition (3.48) is sufficient to satisfy both the boundary conditions 
(3.36) and (3.37). Integrating (3.46) leads to 

(3.49) 

The constant C remains undetermined as to the present order it is negligible in 
the matching. After substitution for Oo, (3.45) becomes 

a$? - tz$i - (2n i- 1) + ( 3n2 - 4n + 1) +, = 0. (3.50) 

For ?z < 4, this equation has no solution satisfying the boundary conditions, 
while, for n > 4, the solution is given (see appendix A) by 

$ O = A -  24-zn I?(# - n) cos nn S m p n - 1 ~ , - ~  ($) sinptdp. (3.51) 
n F(2-n)cos+nn 

Hence, matching the solutions in regions I and I1 in region V determines the 
remaining boundary condition to be imposed on the outer solution, namely, 

or 
1 A ,  = 0, 

f/qnl --f constant ( =  A ,  = A), j  
(3.52) 

where n, > 4 > n2 and A,, A ,  are defined by (3.31). Finally, solving the outer 
problem determines the constant A .  

When 6 > 4, a matching might be obtained if 

@ = YqYv$o + Y-v$ol. (3.53) 

However, with + of order y), the inertia term in the equation of motion is com- 
parable with the terms already retained. Thus, the inner problem becomes non- 
linear and it is no longer possible for y? to be represented by (3.53). Even if 
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eP-1 were sufficiently small for inertia to be neglected, no solution could be 
obtained. Essentially, $, would still be of the form (3.51) and, as 6 -+ 00, 

$() N g-;-t(Ap+Bg3”). (3.54) 

Unfortunately this solution cannot be equated to the solution (3.33) in the region 
of overlap. 

(ii) The outer problem 8 < t ,  a = 0. By considering the motion when the 
magnetic field lines are unperturbed (a = 0) ,  solutions of the outer problem are 
obtained for 0 6 e < $. Moreover, it will become apparent, from considering 
the case e = 0, a Q 1, that an approximately uniform magnetic field can be 
maintained and hence that the results presented here for a = 0 are still valid 
when a Q 1. 

Substituting = -7, (3.26) and (3.28) become 

Y?’ = (1 - O)/q2, (3.55) 

[( 1 + 11%) 01” = SO( 1 - @)p, (3.56) 

together with the boundary conditions, 

0 N l-A(s)q,l as q+O, (3.57) 

0 = O(7-2) as q-too,  (3.58) 

where nl( > nz) is given by (3.32), and A(€)  is a constant to be determined. The 
boundary condition, as 7 + 0, has been imposed by the form of the solution in 
region 11. 

We propose the following series solution 

where 

(3.59) 

(3.60) 

0, = -&.q(@-tan-lq)/(l +q2) ,  (3.61) 

This result is obtained formally by substituting (3.59) into (3.56) and equating 
powers of E .  In  order to establish that the boundary conditions are satisfied, we 
assume that for n = 1,2, . . . , N - 1, On takes the asymptotic forms, 

0, N - Qrq( -lnq)W-l/(n- 1) ! (n 2 1) as q --f 0, (3.63) 

0, = O(q-%) as q-+00, (3.64) 

and that 0, is bounded for 0 < q 6 00. Clearly, applying these conditions to 
(3.62) indicates that ON also satisfies them. It follows that (3.63) and (3.64) hold 
for all values of n. Moreover, summing the expressions for On, as q -+ 0, gives 

(3.65) 
49-2 
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Now, from (3.32), we have n, = 1-e+O(e2), 

n, = E + O(e2), 1 (3.66) 

and hence the asymptotic form (3.65) satisfies the boundary condition (3.57). 
Unfortunately, though we have been able to show that the solution (3.59) 

converges to the correct asymptotic form, as 7 + 0, we have been unable to 
establish that the series converges for all 7. However (3.56) was also solved 
numerically (details are given in appendix B) on the Cambridge University Titan 
computer for various vaIues of E (see figure 5). The values of A(€)  andf(cO) (as 
defined by (3.30)) were found to be in close agreement with the approximate 

(3.67) values, 

determined by (3.65) and (3.61) (see table 1). 

A(€)  = (in)€, f(m) = $€, 

0 

0.9 - 

0.248 

I I 

0.1 0.2 
0.8 I *11 

FIGURE 5. The computed 0 curves for various values of E (  < 0.25) near 7 = 0. 

When E 4 1, the outer solution near 7 = 0 is 

0 N 1-(*n)ql-e+ ..., (3.68) 

Y N -(&)?p+..., (3.69) 

while, for 7 = O(l),  0 = 1/(1+7”>, (3.70) 

Y = tan-l 7 - (in). (3.71) 

Evidently, by considering (3.55), (3.56), the limiting process 7 fixed, E + 0 
followed by 7 -+ 0 will yield the result, 

‘r + -in, (3.72) 

in (3.69) (in agreement with (3.71)). However, erroneously truncating the series 
(3.69) after the first term, and taking the limit E + 0, leads to Y 3 - in. Hence, 
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for E < 1, we have two asymptotic solutions valid in region 11. For ytE = 1, the 
analysis of 0 3.1 is valid giving the solution, 

(3.73) 

$,, = -(&r)ytcerfE (E = Opt) .  (3.74) 

p* = - (W erff, 

while, for y te  B 1, the analysis above indicates that 

E = 0, 
n = l  

6 = 0.1 
n = 0.8873 

E = 0.2, 
n = 0.7236 

E = 0.24, 
n = 0.6 

E = 0.248, 
n = 0.5447 

a 

0.1 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.3 
1-4 

0 

0 
0- 1 
0.2 
0.4 
0.6 
0- 8 
0.85 

0 

0 
0- 1 
0.2 
0-4 
0.45 
0.5 
0.525 
0.55 
0.56 

A 

I o  
0.0773 

J 
0.1528 
0-157 
0.163 
0.176 
0.194 
0.226 
0-238 

0.1813 

0.185 
0.196 
0.212 
0.263 
0-286 
0.319 
0.344 
0-387 
0.424 

f h )  

0 

0.0531 

0.1178 
0.123 
0.130 
0.145 
0.169 
0.219 
0.247 

0.1550 

0.1674 
0.180 
0.194 
0.242 
0.264 
0.298 
0.325 
0.375 
0.427 

b,(% 0) 
0.949 
0.897 
0.787 
0.670 
0.542 
0.400 
0.236 
0.140 
0.021 

1 

1 
0.934 
0.863 
0.707 
0.517 
0.253 
0.165 

1 

1 
0.920 
0.830 
0.597 
0.516 
0.411 
0.339 
0.228 
0.137 

-blL.(14 0) 
0.08 
0.16 
0.35 
0.56 
0.82 
1.14 
1-62 
2.01 
3.06 

0 

0 
0.09 
0.18 
0.40 
0.70 
1.24 
1 53 

0 

0 
0.09 
0.19 
0.47 
0.57 
0.72 
0.83 
1-02 
1.24 

TABLE The computed values of A ,  =,a), b,(z, 0) ,  -bs(lzl, 0) for various 
values of 6 and a. For a = 0, the figures are accurate to within + yo. 

Clearly, the motion for 8 + 0 is very different from the simple solution described 
in 0 3.1. Fluid is still driven radially inwards towards the origin in region I and 
ejected along the axis x = 0, but superimposed on this motion is an eddy in 
region I1 whose flux increases as yB-tn (figures 6 and 7).  Since the main bulk of 
the flow is in region 11, as y +- co, it might be anticipated that the motion would 
not depend on the flow in region I. This is not the case, as the flow in region I1 
is not unique and depends on the matching made in region V. The buoyancy 
torque in region 11, which gives rise to the eddy, results from small disturbances 
of the basic temperature distribution caused by the convection of heat by the 
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induced motion, i.e. to lowest order 8 = y-l, a6/ax = 0. The situation resembles 
to some extent linearized Benard convection. Moreover, this suggests that, when 
E > f, the motion will consist of numerous eddies (owing to to the unstable strati- 
fication) and hinted at by (3.33) whose structure will depend on viscosity (and 
possibly inertia), or even that no steady solution is possible (cf. discussion of the 
magnetic field in Q 3.3). 

(iii) The outer problem E < $, a + 0. The full non-linear equations (3.26)-(3.28) 
were integrated numerically for various values of E , and a on the Titan computer. 
The computed values of A,  (equation (3.31), A ,  = 0) ,  f(co) (equation (3.30)), 
b,(x, 0) ,  b,( (xI,O) are given in table 1. The details of the calculation are given in 
appendix B. However, it is worth noting here that, as y + co, (3.27) has the 
asymptotic solution, 

@ = -b&, O)r--b,(lXI,O)+O(l;l-l), (3.75) 

FIGURE 6. The stream function, for fixed y. 
(Note the region of overlap.) 

Y 

FIUURE 7. The streamlines in regions I 
and 11, for e < 0.25. 

where b,(x, 0) ,  b,( IxI,O), (the vertical and horizontal components of the magnetic 
field on x > 0, y = 0) are both constants. Moreover, the numerical results indi- 
cate that (for given E )  the value of b,(x, 0) decreases monotonically from 1 to 0 
as a increases from 0 to E ( E )  (some constant depending on the value of E ) ,  i.e. 
the analysis is valid only for 0 B a < B ( E ) .  

For the particular case E = 0 (corresponding to an infinite thermal con- 
ductivity), a series solution for @ may be obtained when a is small. Equation 

(3.28) has the solution 0 = (1 + y y ,  (3.76) 
and (3.26), (3.27) reduce to ~ 2 y '  = r z / ( l  +yz), (3.77) 

@@" = - ay2/( 1 + q 2 ) 2 .  (3.78) 
Hence, for a < 1, we have the solution 

Clearly, to order a, the magnetic field is 
@ = - 7 + *a (y  - tan-' y) + O(a2). (3.79) 

(3.80) b = {  [*cc(y/(1+y2)-tan-ly), l - ~ a y z / ( l + y z ) ]  (y > O ) ,  

[O,  1-&3 (y < 01, (3.81) 
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and in particular, on y = 0, 

b(x, 0) = [ - (sgnx) tn-a, 1 - $a]. (3.82) 

Finally, the magnetic field lines for a + 0 are illustrated in figure 8. 

Y I"' 

FIGURE 8. The perturbed magnetic field lines, when a + 0. 

3.3. Discussion 
The difference between the point heat source and line heat source problems is 
interesting. Evidently, the difference results from the importance, in the case 
of the line heat source, of thermal convection (and to a lesser extent advection 
of the magnetic field). Mathematically, the reasons for this are clear from the 
form of the similarity solutions. However, physically, the larger input of heat 
at the origin in the case of the line heat source, results in a larger flux of fluid, 
and it is for this reason that advective effects are now important. 

The choice of boundary conditions on the magnetic field for the line heat 
source problem requires discussion. Clearly, the choice of a perfectly conducting 
solid makes the problem well posed. In  this case, a current sheet flows a t  the 
surface of the solid, which balances to some extent the effect of current produced 
in the fluid. If we suppose that the solid is of finite conductivity, and that a radial 
inflow of the type described in 5 3.1 is maintained (e.g. assuming e = 0 , O  < a < l), 
then the currents produced by the motion are such as totally disrupt the con- 
ditions of a uniformly applied magnetic field at  infinity. Moreover, if we were 
to switch on the temperature distribution at time t = 0 and consider the transient 
problem, it is likely that the resulting motions will never settle down to a steady 
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state as the uniform magnetic field a t  a great distance is likely to be ultimately 
disturbed. To illustrate this point, we consider the following time dependent 
problem, which resembles to some extent the speculated motion when B = 0, 
0 < 01 < 1. At time t = 0, an unbounded fluid is permeated by a uniform magnetic 
field b = 9. Subsequently, aradial sink flow with velocity u, = - l / r  (r = (9 + y2)*) 
is maintained, while the applied magnetic field a t  infinity is kept constant 
b = 9. The resulting magnetic field may be expressed in terms of the magnetic 
vector potential x in the similarity form 

x = -xP(r2/4t) ,  (3.83) 

where P and the solution of this problem are given in appendix C. Clearly, there 
is no ultimate steady state. Thus, it is in this sense that we may speculate that 
there is no steady solution to the line heat source problem when the solid is of 
finite conductivity. However, if the fluid and solid are of finite extent (as they 
must be in a physical situation), it  is to be expected that for a sufficiently small 
an approximately uniform magnetic field may be maintained, such that the 
analysis in $ 3.2 is relevant in certain regions of flow. 

When the solid is a perfect conductor, the problem is perhaps best considered 
as the ultimate steady state of a time dependent problem. Thus, initially a uni- 
form magnetic field is maintained. Subsequently, the magnetic field is ‘frozen’ 
into the solid, and the magnetic field, as y -+ 00, ultimately settles down to a 
uniform vertical magnetic field with a value that is greater than its initial value. 
Thus, strictly, it is the magnetic field in the solid which is given, not the magnetic 
field, as y -+ co. Clearly, from this point of view, the restriction on the values of 
01 in $3.2 (iii) is purely mathematical and is not a restriction on any of the initial 
values of physical quantities. 

The author is grateful to Dr H. K. Moffat for his help and guidance, and 
to the Scientific Research Council for the award of a research studentship. 

Appendix A 

particular integrals are sought in the form 
In order to solve (3.50) subject to the boundary conditions (3.47) and (3.48) 

where C is a contour in the complex plane to be chosen later. Substituting this 
value of @ into (3.50), it is apparent that F(p)  must satisfy 

(p2-F)” - (2n. + 1) @F)’ - (3n2 - 4n + 1 + ip4) P = 0, (A 2) 

[{CpzF + (272 + 1) pF - (p2P)’) ep[lc = 0. (A 3) 

Putting P(23) = p*-lG@), (A 4) 

and the boundary condition 
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i t  follows that G@) satisfies 

p(pG')'-[(2n- 1)2+$p4]G = 0. 

Hence, F ( p )  has the general solution, 

P ( p )  = P-1{AIv($p2) + m , ( $ p 2 ) } ,  

v = n-1  where 2,  

and I, is the Bessel function of imaginary argument. 
There are four particular integrals corresponding to 

C,: p varies from 0 to co, 

c,: p varies from o to - co, 1 

777 

F ( p )  = pn-lK,( - ip2) ,  
C,: p varies from 0 to ico, 

C,: p varies from 0 to - ico, 

where K ,  is defined by 

with the particular property 

z+ e"K,(z) -+ constant as z -+ co 

(Watson 1958, p. 202). In order to satisfy the boundary conditions at = 0 
an odd combination of particular integrals must be taken, pairing either Cl, C2 
or C,, C,. The former gives a divergent solution as f [  -+ co, so the required solution 
must be given by 

llf(0 = y P n - 1 K A W )  0 ShPtdP. (A 10) 

The boundary condition (3.48) can be satisfied only for n > fr, in which case 

(A 11) 
I?( 1 - n) cos (Brim) 
r(# - n) cos nn 

+(c) -23%-h tn-l as c+co. 

Hence, for n < 8, there is no solution, while, for n: > i, 

Appendix B 

conditions, 
The methodused tointegrate numerically (3.26)-(3.28) subject to the boundary 

@ = O ,  @'=-I at r=O,  (B 1) 

where f is defined by (3.30), is outlined. 
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Introducing three new functions g(q),  p ( 7 ) ,  q(7), where 

0 = -P7, (B 3) 

the governing equations may be expressed in the form, 

?P' = qi 

7f' = g. (B 7) 

In order to avoid difficulties near the origin, we define the functions G, and G2 as 

(B 8) 
G -__-- g - n2f G2 = g - n 4  

TG' - -~ E r " ( l - ~ , " ) f - ( 2 p 2 + 1 ) l j ~ - p 2 7 4 f - f 2  

yG' - -~ E V + ( 1 - - P 2 ) f - ( 2 P 2 +  1)7"-P274f-f_" 
p2( 1 + 72)2?%2 

(n, - n2) v1 ' ( n 2  - n1) TnZ ' 1 -  

which then satisfy 

p2( 1 + 7 2 ) 2 p l  -1 039) 
1 -  

n1- n2 

2 -  
n1- n2 

7 

where f = 7nlG1 - vn2G2. (B 10) 

In terms of the new variables, the boundary conditions become 

p(0)  = 1,  a(0) = G2(0) = g(m) = 0. (B 11) 

Equations (B 3)-(B 10) were integrated numerically using the Runge-Kutta- 
Gill method with a variable step length, 

6 = 0.0057. (B 12) 

The integration was divided into two parts. For 7 > 0-1 ,  (B 4)-(B 7) were used 
while, for 7 < 0.1, the integration was changed to (B a), (B 5 ) ,  (B 9) and (B 10). 

For a = 0, the value of f(co) was adjusted so that, when integrating from co 
to 0,  G2(0)  = 0. A similar procedure was adopted when integrating from 0 to og 
(for numerical purposes 0 and co were taken at 7 = O( ando( 10) respectively). 
An agreement of at  least +yo was achieved between the values of f(m) and 
G,(O) (=  A(€,  0)) obtained by integration in the different directions. 

For a! $. 0, the equations were integrated from 0 to 00 only (for numerical 
purposes 0 and 00 were taken at  0(10-6) and O(103)).  No check of the accuracy 
was obtained by integration from co to 0 due to the difficulty of applying the 
boundary conditions. However, comparison with the results for a! = 0 suggests 
an accuracy of about 1 yo. 

Finally the values ofp(m) and [qq] (co) determine the components of magnetic 
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Appendix C 
The solution given by (3 .83) ,  to the problem posed in Q 3.3 is determined by 

solving the magnetic induction equation (the modified time dependent form of 

subject to the boundary conditions, 

1 x - f - x  as rlt%+oo, 

X = O  a t  Y = O ,  j 
where the time scale has been suitably non-dimensionalized, and 

u = ( -x / r2 ,  -y / r2 ) .  

Substituting x = - x P ( r 2 / 4 t ) ,  

into (C 1) leads to the ordinary differential equation, 

4C2Fff + ( ( 8  + 201) C-t 4C2} F’ + aF = 0, 

where 6 = r2/4t. This equation has the solution 

satisfying the boundary condition (C 2), where @ is Humbert’s symbol denoting 
a confluent hypergeometric function (Erdelyi et al. 1953), and 

m = ${(a + 2) - (a2 + 4)4]. (C 6) 
Thus, as t + a3 for fixed r ,  

4mtmx 
r2m 
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